Tractor & Construction Plant Wiki
Register
Advertisement
Blmexcavsm

The hydraulic cylinders on this excavator control the machine's boom and dipper.

A Hydraulic cylinder (also called a linear hydraulic motor) is a mechanical actuator that is used to give a unidirectional force through a unidirectional stroke. It has many applications, notably in construction equipment (engineering vehicles), manufacturing machinery, and civil engineering.[1]

Operation[]

Hydraulic cylinders get their power from pressurized hydraulic fluid, which is typically oil. The hydraulic cylinder consists of a cylinder barrel, in which a piston connected to a piston rod moves back and forth. The barrel is closed on one end by the cylinder bottom (also called the cap) and the other end by the cylinder head (also called the gland) where the piston rod comes out of the cylinder. The piston has sliding rings and seals. The piston divides the inside of the cylinder into two chambers, the bottom chamber (cap end) and the piston rod side chamber (rod end / head end).

Flanges, trunnions, clevises, Lugs are common cylinder mounting options. The piston rod also has mounting attachments to connect the cylinder to the object or machine component that it is pushing / pulling.

A hydraulic cylinder is the actuator or "motor" side of this system. The "generator" side of the hydraulic system is the hydraulic pump which brings in a fixed or regulated flow of oil to the hydraulic cylinder, to move the piston. The piston pushes the oil in the other chamber back to the reservoir. If we assume that the oil enters from cap end, during extension stroke, and the oil pressure in the rod end / head end is approximately zero, the force F on the piston rod equals the pressure P in the cylinder times the piston area A:

During the retraction stroke, if oil is pumped into the head (or gland) at the rod end and the oil from the cap end flows back to the reservoir without pressure, the fluid pressure in the rod end is (Pull Force) / (piston area - piston rod area):

where P is the fluid pressure, Fp is the pulling force, Ap is the piston face area and Ar is the rod cross-section area.

Parts of a hydraulic cylinder[]

A hydraulic cylinder consists of the following parts:[2]

Cylinder barrel[]

The main function of cylinder body is to hold cylinder pressure. The cylinder barrel is mostly made from a seamless tube. The cylinder barrel is ground and/or honed internally with a typical surface finish of 4 to 16 microinch. Normally hoop stress is calculated to optimize the barrel size.

Cylinder base or cap[]

The main function of the cap is to enclose the pressure chamber at one end. The cap is connected to the body by means of welding, threading, bolts, or tie rod. Caps also perform as cylinder mounting components [cap flange, cap trunnion, cap clevis]. Cap size is determined based on the bending stress. A static seal / o-ring is used in between cap and barrel (except welded construction).

Cylinder head[]

The main function of the head is to enclose the pressure chamber from the other end. The head contains an integrated rod sealing arrangement or the option to accept a seal gland. The head is connected to the body by means of threading, bolts, or tie rod. A static seal / o-ring is used in between head and barrel.

Piston[]

The main function of the piston is to separate the pressure zones inside the barrel. The piston is machined with grooves to fit elastomeric or metal seals and bearing elements. These seals can be single acting or double acting. The difference in pressure between the two sides of the piston causes the cylinder to extend and retract. The piston is attached with the piston rod by means of threads, bolts, or nuts to transfer the linear motion.

Piston rod[]

The piston rod is typically a hard chrome-plated piece of cold-rolled steel which attaches to the piston and extends from the cylinder through the rod-end head. In double rod-end cylinders, the actuator has a rod extending from both sides of the piston and out both ends of the barrel. The piston rod connects the hydraulic actuator to the machine component doing the work. This connection can be in the form of a machine thread or a mounting attachment....

Seal gland[]

The cylinder head is fitted with seals to prevent the pressurized oil from leaking past the interface between the rod and the head. This area is called the seal gland. The advantage of a seal gland is easy removal and seal replacement. The seal gland contains a primary seal, a secondary seal / buffer seal, bearing elements, wiper / scraper and static seal. In some cases, especially in small hydraulic cylinders, the rod gland and the bearing elements are made from a single integral machined part.

Seals[]

The seals are considered / designed as per the cylinder working pressure, cylinder speed, operating temperature, working medium and application. Piston seals are dynamic seals, and they can be single acting or double acting. Generally speaking, Elastomer seals made from nitrile rubber, Polyurethane or other materials are best in lower temperature environments, while seals made of Fluorocarbon Viton are better for higher temperatures. Metallic seals are also available and commonly use cast iron for the seal material. Rod seals are dynamic seals and generally are single acting. The compounds of rod seals are nitrile rubber, Polyurethane, or Fluorocarbon Viton. Wipers / scrapers are used to eliminate contaminants such as moisture, dirt, and dust, which can cause extensive damage to cylinder walls, rods, seals and other components. The common compound for wipers is polyurethane. Metallic scrapers are used for sub zero temperature applications, and applications where foreign materials can deposit on the rod. The bearing elements / wear bands are used to eliminate metal to metal contact. The wear bands are designed as per the side load requirements. The primary compounds for wear bands are filled PTFE, woven fabric reinforced polyester resin and bronze.

Other parts[]

  • Cylinder base connection
  • Cushions

Single acting vs. double acting[]

  • Single acting cylinders are economical and the simplest design. Hydraulic fluid enters through a port at one end of the cylinder, which extends the rod by means of area difference. An external force or gravity returns the piston rod.
  • Double acting cylinders have a port at each end, supplied with hydraulic fluid for both the retraction and extension.

Hydraulic cylinder designs[]

There are primarily two styles of hydraulic cylinder construction used in industry: Tie rod style cylinders and welded body style cylinders.

Tie rod cylinder[]

Tie rod style hydraulic cylinders use high strength threaded steel rods to hold the two end caps to the cylinder barrel. This method of construction is most often seen in industrial factory applications. Small bore cylinders usually have 4 tie rods, while large bore cylinders may require as many as 16 or 20 tie rods in order to retain the end caps under the tremendous forces produced. Tie rod style cylinders can be completely disassembled for service and repair.

The National Fluid Power Association (NFPA) has standardized the dimensions of hydraulic tie rod cylinders. This enables cylinders from different manufacturers to interchange within the same mountings.

Welded body cylinder[]

Welded body cylinders have no tie rods. The barrel is welded directly to the end caps. The ports are welded to the barrel. The front rod gland is usually threaded into or bolted to the cylinder barrel. This allows the piston rod assembly and the rod seals to be removed for service.

Cutawayweldedcylinder544x123

A Cut Away of a Welded Body Hydraulic Cylinder showing the internal components

Welded body cylinders have a number of advantages over tie rod style cylinders. Welded cylinders have a narrower body and often a shorter overall length enabling them to fit better into the tight confines of machinery. Welded cylinders do not suffer from failure due to tie rod stretch at high pressures and long strokes. The welded design also lends itself to customization. Special features are easily added to the cylinder body. These may include special ports, custom mounts, valve manifolds, and so on.

The smooth outer body of welded cylinders also enables the design of multi-stage telescopic cylinders.

Welded body hydraulic cylinders dominate the mobile hydraulic equipment market such as construction equipment (excavators, bulldozers, and road graders) and material handling equipment (forklift trucks, telehandlers, and lift-gates). They are also used in heavy industry such as cranes, oil rigs, and large off-road vehicles in above-ground mining.

Piston rod construction[]

The piston rod of an hydraulic cylinder operates both inside and outside the barrel, and consequently both in and out of the hydraulic fluid and surrounding atmosphere.

Coatings[]

Wear and corrosion resistant surfaces are desirable on the outer diameter of the piston rod. The surfaces are often applied using coating techniques such as Chrome (Nickel) Plating, Lunac 2+ duplex, Laser Cladding, PTA welding and Thermal Spraying. These coatings can be finished to the desirable surface roughness (Ra, Rz) where the seals show optimum performance. All these coating methods have their specific advantages and disadvantages. It is for this reason that coating experts play a crucial role in selecting the optimum surface treatment procedure for protecting Hydraulic Cylinders.

Cylinders are used in different operational conditions and that makes it a challenge to find the right coating solution. In dredging there might be impact from stones or other parts, in salt water environments there are extreme corrosion attacks, in off-shore cylinders facing bending and impact in combination with salt water, and in the steel industry there are high temperatures involved, etc.... It is important to understand that currently there is no single coating solution which successfully combats all the specific operational wear conditions. Every single technique has its own benefits and disadvantages.

Length[]

Piston rods are generally available in lengths which are cut to suit the application. As the common rods have a soft or mild steel core, their ends can be welded or machined for a screw thread.

Special hydraulic cylinders[]

Telescopic cylinder[]

Double acting telescopic cylinder (symbol,ISO1219)

Telescopic cylinder (ISO 1219 symbol)

The length of an hydraulic cylinder is the total of the stroke, the thickness of the piston, the thickness of bottom and head and the length of the connections. Often this length does not fit in the machine. In that case the piston rod is also used as a piston barrel and a second piston rod is used. These kinds of cylinders are called telescopic cylinders. If we call a normal rod cylinder single stage, telescopic cylinders are multi-stage units of two, three, four, five or more stages. In general telescopic cylinders are much more expensive than normal cylinders. Most telescopic cylinders are single acting (push). Double acting telescopic cylinders must be specially designed and manufactured.

Plunger cylinder[]

An hydraulic cylinder without a piston or with a piston without seals is called a plunger cylinder. A plunger cylinder can only be used as a pushing cylinder; the maximum force is piston rod area multiplied by pressure. This means that a plunger cylinder in general has a relatively thick piston rod.

Differential cylinder[]

Double acting cylinder (symbol,differential,ISO1219)

Differential cylinder (ISO 1219 symbol)

A differential cylinder acts like a normal cylinder when pulling. If the cylinder however has to push, the oil from the piston rod side of the cylinder is not returned to the reservoir, but goes to the bottom side of the cylinder. In such a way, the cylinder goes much faster, but the maximum force the cylinder can give is like a plunger cylinder. A differential cylinder can be manufactured like a normal cylinder, and only a special control is added.

Position sensing "smart" hydraulic cylinder[]

Position sensing hydraulic cylinders eliminate the need for a hollow cylinder rod. Instead, an external sensing "bar" using Hall Effect technology senses the position of the cylinder’s piston. This is accomplished by the placement of a permanent magnet within the piston. The magnet propagates a magnetic field through the steel wall of the cylinder, providing a locating signal to the sensor.

A note about popular terminology[]

In the United States, popular usage refers to the whole assembly of cylinder, piston, and piston rod (or more) collectively as a "piston", which is incorrect. Instead, the piston is the short, cylindrical metal component that separates the two parts of the cylinder barrel internally.

References[]

Advertisement