Tractor & Construction Plant Wiki
Advertisement

[[File:mon Hydraulic mining, or hydraulicking, is a form of mining that uses high-pressure jets of water to dislodge rock material or move sediment.[1] In the placer mining of gold or tin, the resulting water-sediment slurry is directed through sluice boxes to remove the gold.

Precursor - ground sluicing[]

Hydraulic mining had its precursor in the practice of ground sluicing, a development of which is also known as "hushing", in which surface streams of water were diverted so as to erode gold-bearing gravels. This was originally used in the Roman empire in the first centuries AD and BC, and expanded throughout the empire wherever alluvial deposits occurred[2] The Romans used ground sluicing to remove overburden and the gold-bearing debris in Las Médulas of Spain, and Dolaucothi in Britain. The method was also used in Elizabethan Britain for developing lead, tin and copper mines.

Panorámica de Las Médulas

Panoramic view of Las Médulas

Roman era[]

Water was used on a large scale by Roman engineers in the first centuries BC and AD when the Roman empire was expanding rapidly in Europe. Using a process later known as hushing, the Romans stored a large volume of water in a reservoir immediately above the area to be mined; the water was then quickly released. The resulting wave of water removed overburden and exposed bedrock. Gold veins in the bedrock were then worked using a number of techniques, and water power was used again to remove debris. The remains at Las Medulas and in surrounding areas show badland scenery on a gigantic scale owing to hydraulicking of the rich alluvial gold deposits. Las Medulas is now a UNESCO World Heritage site. The site shows the remains of at least seven large aqueducts of up to 30 miles in length feeding large supplies of water into the site. The gold-mining operations were described in vivid terms by Pliny the Elder in his Naturalis Historia published in the first century AD. Pliny was a procurator in Hispania Terraconensis in the 70's and must have witnessed for himself the operations. The use of hushing has been confirmed by field survey and archaeology at Dolaucothi in South Wales, the only known Roman gold mine in Britain.

California Gold Rush Hydraulic Mining[]

Henry Sandham - The Monitor

Hydraulic mining for gold in California, from The Century Magazine January 1883

The modern form of Hydraulic mining, using jets of water directed under very high pressure through hoses and nozzles at gold-bearing upland paleogravels, was first used by Edward Matteson near Nevada City, California in 1853 during the California Gold Rush.[3] Matteson used canvas hose which was later replaced with crinoline hose by the 1860s.[4] In California, hydraulic mining often brought water from higher locations for long distances to holding ponds several hundred feet above the area to be mined. Insofar as California hydraulic mining exploited primarily river gravels, it was one form of placer mining, that is, working of alluvium (river sediments).

X-60072

Gold miners excavate an eroded bluff with jets of water at a placer mine in Dutch Flat, California sometime between 1857 and 1870.

Early placer miners in California discovered that the more gravel they could process, the more gold they were likely to find. Instead of working with pans, sluice boxes, long toms, and rockers, miners collaborated to find ways to process larger quantities of gravel more rapidly. Hydraulic mining became the largest-scale, and most devastating, form of placer mining. Water was redirected into an ever-narrowing channel, through a large canvas hose, and out through a giant iron nozzle, called a "monitor." The extremely high pressure stream was used to wash entire hillsides through enormous sluices.

By the early 1860s, while hydraulic mining was at its height, small-scale placer mining had largely exhausted the rich surface placers, and the mining industry turned to hard rock (called quartz mining in California) or hydraulic mining, which required larger organizations and much more capital. By the mid-1880s, it is estimated that 11 million ounces of gold (worth approximately US$7.5 billion at mid-2006 prices) had been recovered by hydraulic mining in the California Gold Rush.

Environmental consequences[]

P-1252

A man leans over a wooden sluice. Rocks line the outside of the wood boards that create the sluice.

While generating millions of dollars in tax revenues for the state and supporting a large population of miners in the mountains, hydraulic mining had a devastating effect on riparian natural environment and agricultural systems in California. Millions of tons of earth and water were delivered to mountain streams that fed rivers flowing into the Sacramento Valley. Once the rivers reached the relatively flat valley, the water slowed, the rivers widened, and the sediment was deposited in the floodplains and river beds causing them to rise, shift to new channels, and overflow their banks, causing major flooding, especially during the spring melt.

Cities and towns in the Sacramento Valley experienced an increasing number of devastating floods, while the rising riverbeds made navigation on the rivers increasingly difficult. Perhaps no other city experienced the boon and the bane of gold mining as much as Marysville, California. Situated at the confluence of the Yuba and Feather rivers, Marysville was the final "jumping off" point for miners heading to the northern foothills to seek their fortune. Steamboats from San Francisco, carrying miners and supplies, navigated up the Sacramento River, then the Feather River to Marysville where they would unload their passengers and cargo. Marysville eventually constructed a complex levee system to protect the city from floods and sediment. Hydraulic mining greatly exacerbated the problem of flooding in Marysville and shoaled the waters of the Feather River so severely that few steamboats could navigate from Sacramento to the Marysville docks.

The spectacular eroded landscape left at the site of hydraulic mining can be viewed at Malakoff Diggins State Historic Park in Nevada County, California.[5] A similar landscape can be seen at Las Médulas in northern Spain, where Roman engineers ground sluiced the rich gold alluvial deposits of the river Sil. Pliny the Elder mentions in his Naturalis Historia that Spain had encroached on the sea and local lakes as a result of ground sluicing operations.

Legal ramifications[]

Vast areas of farmland in the Sacramento Valley were deeply buried by the mining sediment. Frequently devastated by flood waters, farmers demanded an end to hydraulic mining. In the most renowned legal fight of farmers against miners, the farmers sued the hydraulic mining operations and the landmark case of Edwards Woodruff v. North Bloomfield Mining and Gravel Company made its way to the United States District Court in San Francisco where Judge Lorenzo Sawyer decided in favor of the farmers in 1884, declaring that hydraulic mining was “a public and private nuisance” and enjoining its operation in areas tributary to navigable streams and rivers. Hydraulic mining was recommenced after 1893 when the United States Congress passed the Camminetti Act which allowed such mining if sediment detention structures were constructed. This led to a number of operations above brush dams and log crib dams. Most of the water-delivery infrastructure had been destroyed by an 1891 flood, so this later stage of mining was carried on at a much smaller scale in California.

Beyond California[]

Oriental Claim, Oriental Claims 2, Omeo,Vic, 21.10

The Oriental Claims near Omeo, Australia were mined between the 1850s and 1900s; hydraulic sluicing left man-made cliffs up to 30 metres (98 ft) high such as seen here throughout the area

Lee Moor claypit 1979 - geograph.org

Lee Moor china clay pit in Devon showing hydraulic mining

Although often associated with California due to its adoption and widespread use there, the technology was exported widely, to Oregon (Jacksonville in 1856), Colorado (Clear Creek, Central City and Breckenridge in 1860), Montana (Bannack in 1865), Arizona (Lynx Creek in 1868), Idaho (Idaho City in 1863), South Dakota (Deadwood in 1876), Alaska, British Columbia (Canada), and overseas. It was used extensively in Dahlonega, Georgia and continues to be used in developing nations, often with devastating environmental consequences. The devastation caused by this method of mining caused Edwin Carter, the "Log Cabin Naturalist," to switch from mining to collecting wildlife specimens from 1875-1900 in Breckenridge, Colorado, USA.

Hydraulic mining was also used during the Australian gold rushes where it was called hydraulic sluicing. One notable location was at the Oriental Claims near Omeo in Victoria (Australia) where it was used between the 1850s and early 1900s, with abundant evidence of the damage still being visible today.[6]

Hydraulic mining was used extensively in the Central Otago Gold Rush that took place in the 1860s in the South Island of New Zealand, where it was also known as sluicing.

Starting in the 1870s, hydraulic mining became a mainstay of alluvial tin mining on the Malay Peninsula.[7]

Hydraulicking was formerly used in Polk County, Florida to mine phosphate rock.[8]

Hydraulic mining is the principal way that kaolinite clay is mined in Cornwall and Devon, in South-West England.

In addition to its use in true mining, hydraulic mining can be used as an excavation technique, principally to demolish hills. For example, the Denny Regrade in Seattle was largely accomplished by hydraulic mining.

Underground hydraulic mining[]

High-pressure water jets have also been used in the underground mining of coal, to break up the coal seam and wash the resulting coal slurry toward a collection point.[9]

In popular culture[]

The battle between the old method of pan mining and hydraulic mining is the central theme of the 1985 western film Pale Rider staring Clint Eastwood. In 1967, an episode of the TV show "Bonanza" entitled "The Greedy Ones" featured The Cartwrights' fight against mining on their land, and specifically how hydraulic mining destroyed a land's worth.

See also[]

  • Dolaucothi
  • Hydrology
  • Hydropower
  • Roman engineering

References[]

  1. Paul W. Thrush, A Dictionary of Mining, Mineral, and Related Terms, US Bureau of Mines, 1968, p.560.
  2. Paul W. Thrush, A Dictionary of Mining, Mineral, and Related Terms, US Bureau of Mines, 1968, p.515.
  3. Randall Rohe (1985) Hydraulic mining in the American West, Montana the Magazine of Western History, v.35, n.2, p.18-29.
  4. Isenberg, Andrew (2005). Mining California An Ecological History. Hill and Wang, 34. ISBN 9780809095353. 
  5. "Malakoff Diggins SHP". State of California.
  6. "Oriental Claims Historic Area - Park Notes". Parks Victoria Official Site. Parks Victoria. Archived from the original on 31 August 2006. Retrieved on 16 October 2010.
  7. Mark Cleary and Kim Chuan Goh, Environment and Development in the Straits of Malacca, London: Routledge, 2000, p.47.accessed 5 November 2009.
  8. George J. Young, Elements of Mining, 4th ed., New York: McGraw-Hill, 1946, p.436-438.
  9. Paul W. Thrush, A Dictionary of Mining, Mineral, and Related Terms, US Bureau of Mines, 1968, p.560.
  • Hydraulic Mining in California: A Tarnished Legacy, by Powell Greenland, 2001
  • Battling the Inland Sea: American Political Culture, Public Policy, and the Sacramento Valley: 1850-1986., U.Calif Press; 395pp.
  • Gold vs. Grain: The Hydraulic Mining Controversy in California's Sacramento Valley, by Robert L. Kelley, 1959
  • Lewis, P. R. and G. D. B. Jones, Roman gold-mining in north-west Spain, Journal of Roman Studies 60 (1970): 169-85
  • Momber, A.W.: Hydrodemolition of Concrete Substrates and Reinforced Concrete Structures. Elsevier Applied Science, London, 2005

External links[]

Template:Mining topics

Smallwikipedialogo This page uses some content from Wikipedia. The original article was at Hydraulic mining. The list of authors can be seen in the page history. As with Tractor & Construction Plant Wiki, the text of Wikipedia is available under the Creative Commons by Attribution License and/or GNU Free Documentation License. Please check page history for when the original article was copied to Wikia


Advertisement